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R
ecent advancements in particle size
and morphology control of mesopor-
ous materials have led to the creation

of nano- and submicrometer-sized meso-
porous silica nanoparticles (MSNs).1-5 The
MSN materials with well-ordered cylindrical
pore structures, such as MCM-41 and SBA-15,
have attracted special interest in the biomedi-
cal field.1 The large surface areas and pore
volumes of these materials allow the effi-
cient adsorption of a wide range of molec-
ules, including small drugs,6-10 therapeutic
proteins,11-13 antibiotics,14,15 and antibodies.16

Therefore, thesematerials have been proposed
foruseaspotentialvehicles forbiomedical imag-
ing, real-time diagnosis, and controlled deliv-
ery of multiple therapeutic agents.6-8,10,17-25

Despite the considerable interest in the
biomedical applications of MSNs, relatively
few studies have been published on the
biocompatibility of the two most common
types of MSNs (MCM-41 and SBA-15).26-29

Asefa and co-workers reported that the
cellular bioenergetics (cellular respiration
and ATP levels) were inhibited remarkably
by large SBA-15 nanoparticles, but the inhi-
bition was greatly reduced by smaller MCM-
41-type nanoparticles.26 These differences
in the disruption of cellular bioenergetics
are believed to be caused by the different
surface areas, number of surface silanol
groups, and/or particle sizes of both types
of material. A recent study by Kohane and
collaborators on the systemic effects of MCM-
41 (particle size ∼150 nm) and SBA-15
(particle size ∼800 nm) MSNs in live animals
revealed interesting findings regarding their
biocompatibility.27While large doses ofmeso-
porous silicas administered subcutaneously
to mice appear to be relatively harmless,
the same doses given intravenously or intra-
peritoneally were lethal.27 A possible reason
for the severe systemic toxicity of MSNs
when injected intravenously could be the

interactions of the nanoparticles with blood
cells.
Our initial studies on the biocompatibility

of MCM-41-type MSNs with red blood cells
(RBCs), the dominant (99%) cell type in blood,
suggested that this material was innocuous
in comparison to the highly hemolytic
amorphous silica.30 These results were later
confirmed by Lin and Haynes, who demon-
strated that the hemocompatibility of
MSNs also depended on the size of the
nanoparticles.31 These findings weremainly
based on hemolysis assays performed by
UV-vis spectroscopy. The lack of hemolysis,
however, does not necessarily warrant the
absence of interactions between the parti-
cles and the RBCs, which could lead to more
subtle side effects. Such side effects could
eventually be the ones responsible for the
enhanced systemic toxicity observed upon
intravenous injection of these materials.27

Therefore, an in-depth study of other pos-
sible biological side effects of these materi-
als must be performed if they are intended
to be applied as vehicles for drug delivery.
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ABSTRACT The interactions of mesoporous silica nanoparticles (MSNs) of different particle

sizes and surface properties with human red blood cell (RBC) membranes were investigated by

membrane filtration, flow cytometry, and various microscopic techniques. Small MCM-41-type

MSNs (∼100 nm) were found to adsorb to the surface of RBCs without disturbing the membrane

or morphology. In contrast, adsorption of large SBA-15-type MSNs (∼600 nm) to RBCs induced a

strong local membrane deformation leading to spiculation of RBCs, internalization of the

particles, and eventual hemolysis. In addition, the relationship between the degree of MSN

surface functionalization and the degree of its interaction with RBC, as well as the effect of

RBC-MSN interaction on cellular deformability, were investigated. The results presented here

provide a better understanding of the mechanisms of RBC-MSN interaction and the hemolytic

activity of MSNs and will assist in the rational design of hemocompatible MSNs for intravenous

drug delivery and in vivo imaging.

KEYWORDS: mesoporous silica nanoparticle (MSN) . size . surface functionality .
red blood cell (RBC) membrane . interaction . internalization . deformability

A
RTIC

LE



ZHAO ET AL. VOL. 5 ’ NO. 2 ’ 1366–1375 ’ 2011 1367

www.acsnano.org

In general, our knowledge of the biocompatibility,
bioretention, and biodistribution of MSNs does not
match with the rapid pace of research on their synthe-
ses in numerous forms and structures. To date, efforts
have focused predominantly on exploiting multifunc-
tional nanoparticles as intravascular drug carriers with
different particle sizes ranging from a few tens of
nanometers4,24,32 up to hundreds of nanometers,3,5

various pore diameters ranging from 2 to 10 nm,5,11,33

and assorted surface functionalities from small organic
groups (e.g., amino,34,35 carboxyl,35 thiol,35phosphate,19etc.)
to large molecules (e.g., dendrimers,36 polyethyleneimine
(PEI),25,37 poly(ethylene glycol) (PEG),38 phospholipids,39

etc.). Unfortunately, these endeavors are limited by a
poor understanding of particle interactions with cells in
circulation.
Herein, we report our investigations on the inter-

actions of the twomost common types ofMSNs (MCM-41
and SBA-15) with RBC membranes using fluorescence
and electronmicroscopies and cell biology techniques.
In addition to studying the effects of particle size and
surface area on the hemolytic behavior of MSNs, we
explored the effects that the chemical nature and
degree of surface functionalization of the particles
have on their interactions with RBCs. Understanding
these effects will not only offer a guide for the rational
design of biocompatible particles but also provide an
insight into how to control the circulation properties of
MSNs in the bloodstream. In fact, a prolonged circula-
tion of polymeric nanoparticles has been recently
demonstrated by means of their noncovalent attach-
ment to the RBC membrane.40 Attachment to the RBC
membrane, however, may affect one of its most im-
portant properties, namely, its deformability (i.e., the
ability of an erythrocyte to deform so it can flow
through microcirculation). To the best of our knowl-
edge, this problem has not yet been addressed for any
drug delivery system. In this work, we examined the
effect of RBC-MSN interactions onmembrane deform-
ability by the Nucleopore filtration technique41 and
established how size and surface properties can alter
this important property. Overall, we propose three
fundamental criteria to assess the hemocompatibility
of nanoparticles: (1) hemolytic potential, (2) propensity
to induce RBC membrane deformation or morpholo-
gical alteration, and (3) tendency to impair RBC de-
formability. The evaluation of these conditions will
enable a more adequate estimation of the hemocom-
patibility of many types of nanomaterials. This study
suggests a minimal set of criteria that must be met
before performing in vivo studies involving the intra-
vascular administration of nanoparticles.

RESULTS AND DISCUSSION

Size- and Surface-Dependent MSN Interaction with RBC
Membranes. While particle size effect of MCM-41-type
MSNs has already been established with larger particles

producing lower hemolysis on RBC,31 the question
remainswhether the typically larger SBA-15-typeMSNs
are hemocompatible. A more critical issue is that the
mechanism of how MSNs of different sizes and surface
areas correlate and contribute to their hemocompat-
ibility is unclear, although several biological rationales
have been suggested.30,31 To address these questions,
we prepared two types of MSNs: MCM-41 and SBA-15,
as described in theMethods section. Scanning electron
microscopy (SEM) and transmission electron micro-
scopy (TEM) images showed particle sizes of 100 to
200 nm for the MCM-41-type MSNs (referred to as
s-MSN, Figure 1a,d) and ∼600 nm by ∼300 nm for the
SBA-15-type MSNs (referred as l-MSN, Figure 1b,e). The
hydrodynamic particle size distributions of the materi-
als suspended in phosphate-buffered saline (PBS)
(100 μgmL-1) were determined by dynamic light scatter-
ing (DLS), giving average sizes of 122 nm for s-MSN and
531 nm for l-MSN (Figure 1c). XRD patterns showed that
both s-MSNs and l-MSNs exhibit 2D hexagonal pore
arrangements (Figure 1f).

The hemolysis assay was used to evaluate the
hemolytic behaviors of s-MSN and l-MSN on human
RBCs. Human RBCs were first isolated by centrifugation
and purified by five successive washes with sterile
isotonic PBS, then diluted to 5% hematocrit with PBS
before incubating with MSN suspensions of various
concentrations. Controls were prepared in the same
manner as the above RBC samples except adding
water (positive control) and PBS (negative control)
instead of the MSN suspensions. After a 2 h incubation
at room temperature, the samples were spun down for
the detection of hemoglobin released from hemolyzed
RBCs. Surprisingly, contrary to the recently reported
trend regarding size,31 MSNs with larger particle size
exhibited a higher hemolytic activity than the small
particles (Figure 2). The hemolytic activity of l-MSNs
was first observed at 50 μg mL-1 with 5% hemolysis
detected, while a good hemocompatibility (<2%
hemolysis) of s-MSN was confirmed at concentrations
as high as 100 μg mL-1. While a larger particle size
may be preferable for hemocompatible MSNs below
225 nm,31 increasing particle size of MSNs beyond this
range will not necessarily improve the hemocompat-
ibility as one might intuitively expect. In addition to
particle size, other factors such as the surface area are
also expected to affect the hemolytic potential of MSNs.

To elucidate the mechanism of the observed differ-
ence in hemolysis and investigate the underlying particle
size and surface effects, the interaction ofMSNswith RBCs
were visualized by SEM (Figure 3) and TEM (Figure 4). A
small proportion of s-MSNs were found to adsorb to the
surface of RBC. The cell membrane did not show any
alteration upon particle binding, and RBCs maintained
normal biconcave shape compared to control RBCs
(Figure3BandFigure4 top). In contrast, a largeproportion
of l-MSNs attached to RBC membranes and induced a
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strong local membrane deformation, which frequently
resulted in particle encapsulation by RBCs (Figure 3C and
Figure 4 bottom). The membrane wrapping around
l-MSNs led to an echinocytic (spiculated) shape transfor-
mation of RBCs and a reduction in the ratio of surface area
to volume.42 This inability tomaintain their normal surface
area and control their cell volume can ultimately lead
to the destruction of these cells,42 which explains the
observed high hemolytic activity of l-MSNs.

Two main processes are involved in the interaction
of MSN with the membrane of RBC: (1) binding of the

silanol-rich surface of MSNs with the phosphatidyl
choline-rich RBC membrane,30 and (2) bending of the
RBC membrane to adapt to the rigid surface of MSNs
(Scheme 1).43-47 The occurrence of the interaction
depends on whether the amount of energy released
from the binding of the MSNs with the RBC membrane
(Ei) is able to overcome the amount of free energy
required to bend the membrane and adapt to the
surface of MSNs (Eb). The former energy is associated
with the external surface area (i.e., accessible silanols)
of MSN,30 while the latter is proportional to the curva-
ture or inversely proportional to the square of the
radius (r) of the particle.43,44,47 The external surface
areas of s-MSNs and l-MSNs, calculated from the t plots
of their N2 adsorption isotherms,48 were 81.6 and
155.4 m2 g-1, respectively. The relatively large external
surface area of l-MSN (40% of total surface area) in
comparison to that of s-MSN (8% of total surface area)
implies that l-MSN can have a larger binding energy (Ei)
available for pulling the membrane to the particle
surface. In addition, since surface curvature decreases
with particle size, the bending energy required to wrap
the large particles (Eb) is lower than the one needed to
wrap the smaller particles.43 This combination makes
membrane wrapping and engulfment of l-MSN thermo-
dynamically favorable. On the contrary, in order for the
RBC membranes to wrap around smaller s-MSNs, they
would have to attain a larger curvature (steeper angles
over smaller areas) than they need for wrapping around
the larger particles.43 This would require investing amuch
higher Eb compared to the small amount of Ei, which
thermodynamically prevents themembrane deformation

Figure 1. Scanningelectron (top) and transmission electron (bottom) images of (a,d) s-MSNand (b,e) l-MSN. (c) Hydrodynamic
size distributions of s-MSN (blue) and l-MSN (red) suspended in PBS (100 μg mL-1) measured by dynamic light scattering.
(f) X-ray diffraction patterns of s-MSN (blue) and l-MSN (red).

Figure 2. Hemolysis assay for s-MSN (green lines) and l-MSN
(red lines), using water as a positive control (blue lines)
and PBS as a negative control (dashed black lines). The
materials were suspended at 50 (a,c) and 100 μgmL-1 (b,d).
The mixtures were centrifuged to detect the presence
of hemoglobin in the supernatant visually (a,b) and by
absorption at 541 nm (c,d).
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or engulfment of s-MSN by RBC and explains the lower
hemolytic activity of s-MSNs. Similar explanations on the

effect of particle size on membrane wrapping have been
reported elsewhere.43,44 Hence, the interaction of MSNs

Figure 3. Scanning electron images of RBCs (5% hematocrit) incubated for 2 h at room temperature with (A) PBS as control,
(B) 100 μg mL-1 of s-MSN, and (C) 100 μg mL-1 of l-MSN. Images increase in magnification from left to right with features
highlighted with white squares or arrows. The nanoparticles attached on the cell surface are distinguished by the particle
shape and surface textural difference between the particles and RBCs. (Additional high-magnification images are shown in
Figure S2 in Supporting Information.)

Figure 4. Transmission electron images of RBCs (5% hematocrit) incubated for 2 h at room temperature with 100 μg mL-1

s-MSN (top) and l-MSN (bottom). Images increase in magnification from left to right. The presence of MSNs is confirmed by
the visible pores in the higher magnification micrographs.
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with RBC membranes and the hemolytic activity depend
on not only particle size but also their external surface
area, as well.

Size- and Surface-Dependent Engulfment of MSNs by RBCs.
Though the in vitro endocytosis of MSN has been
systematically investigated with various mammalian
cell lines,4,11,17,34,36,49-52 little is known about the
uptake of nanoparticles by RBCs. This is partly because
the interactions between RBC and MSN are still poorly
understood. Before investigating the internalization of
MSNs by RBC, it is necessary to establish the concen-
tration at which the plasma membrane maintains its
integrity and RBCs retain normal biconcave shape. To
do so, the RBCswere incubatedwith l-MSNs at different
concentrations, and the hemolytic effects aswell as the
resulting cell morphologies were examined by UV-vis
spectroscopy (Figure S3 in Supporting Information)
and SEM (Figure S4). The hemolysis percentage of RBCs
increased from 1 to 11% as the concentration of l-MSN
increased from 20 to 100 μg mL-1, and growing
proportions of spiculated RBCs were observed with
increasing concentrations of l-MSN. As shown in Figure
S4, almost 90% of RBCs exhibited spiculated shape
with 100 μg mL-1 of l-MSN. The proportion of spicu-
lated RBCs decreased to 50% when 50 μg mL-1 of
l-MSN was used. Interestingly, only minor shape mod-
ifications (less than 10% spiculated cells) in RBCs were
observed after incubation with 20 μg mL-1 of l-MSN,
even if many particles were adsorbed to the mem-
branes or underwent internalization (Figure S4, left).
Therefore, the cellular uptake process was examined at
a concentration of 20 μg mL-1 of l-MSN (Figure 5). It
should be noted that the images in Figure 5 corre-
spond to different cells at different stages of nanopar-
ticle encapsulation. A plausible interpretation of our
observations is as follows. The particle interacts with an
initially flat cell membrane. Driven by a local reduction
in free energy (Scheme 1), the phospholipids in the
immediate neighborhood of the site of contact are
drawn to the surface of the particle, leading to mem-
brane wrapping and eventual encapsulation. Such

internalization is different from phagocytosis or endo-
cytosis because it appears to be driven by the balance
of two opposing forces rather than by an active uptake
of nutrients by the cell. It should be stressed that even if
almost no hemolysis or spiculation is observed at this
concentrationwe cannot yet exclude the potential side
effects of the internalization of l-MSN into RBC. Never-
theless, this preliminary study on MSN engulfment by
RBC is an important step toward establishing the
plausibility of using MSNs as tools for the treatment
of RBC-related diseases or intravascular drug delivery.
We are currently conducting more studies to under-
stand and control the internalization of MSNs and
the delivery of therapeutic agents into RBCs to be pub-
lished in subsequent manuscripts.

Surface Functionality Effects on RBC-MSN Interaction. The
results from the size- and surface-dependent inter-
actions of MSNs with RBCs have demonstrated a supe-
rior hemocompatibility of s-MSNs over l-MSNs. This
does not imply, however, that s-MSNs lack any inter-
action with the membranes of RBCs. While the inter-
actions of MSNs with the membranes of RBCs are
known to be dependent on the presence of silanol
groups on the surface of the particles,30,31 there is no
quantitative information on the magnitude of this
association. Given the interest of utilizing s-MSNs for
intravenous drug delivery, it is necessary to be able
to measure and control the degree of the above-
mentioned interactions and, thus, controlling the cir-
culation of the particles in the bloodstream.40,53

To study these interactions, s-MSNs were first labeled
with fluorescein isothiocyanate (FITC), which enabled
their tracking by flow cytometry and confocal fluores-
cence microscopy. FITC-s-MSNs were then functionalized
withdifferent amounts of aminopropyl (AP), polyethylene
glycol (PEG), and carboxyl (CA) groups, as described in the
Methods section. These functionalized materials are re-
ferred as APx-FITC-s-MSN, PEGx-FITC-s-MSN, and CAx-FITC-
s-MSN, respectively, where the subscript x corresponds to
thenumberofmmol introducedpergramofmaterial. The
amount of functional groups (AP, PEG, andCA) grafted on
MSNs was quantified by TGA shown in the bottom of
Figure S5 of the Supporting Information and summarized
in Table S1. Thequantificationof nanoparticle attachment
to the membrane of RBCs was performed by flow cyto-
metry. Diluted suspensions of RBCs (5 � 106 cells mL-1)
were mixed with equal volumes of nanoparticle suspen-
sions to reachafinal concentrationof 10μgmL-1 ofMSNs
and incubated at room temperature for 2 h before flow
cytometry analysis. As shown in Figure 6, the functiona-
lized nanoparticles exhibited lower affinity to RBC than
FITC-s-MSNs; furthermore, the affinity decreased with
increasing degree of functionality. This trend was ob-
served for each functionalized material, independent of
the surface charge. In particular, AP and PEG groups
(∼25% of RBC bound with AP1.5-FITC-s-MSN and ∼20%
with PEG1-FITC-s-MSN) showed a significantly better

Scheme 1. Schematic illustration of the size- and surface-
dependent interaction of MSN and RBC membrane. MSN
with radius r can be wrapped around or engulfed by RBC
if the energy (Ei) released from the RBC-MSN interaction
is greater than the energy (Eb) required for membrane
bending.
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ability to reduce the MSN binding with RBC than CA
groups (∼65% of RBC bound with CA1.5-FITC-s-MSN). The
inhibitory effect of PEG on the adsorption of MSN to RBC
was not surprising since PEGylation of nanoparticles is
generally used to block nonspecific binding of nanopar-
ticles to proteins.54 On the contrary, the reduction of MSN
binding to RBC due to aminopropyl group functionaliza-
tion was completely unexpected because amines are
well-known to facilitate adsorption of several biomole-
cules to the surface of nanoparticles and facilitate many
nanoparticle-cell interactions.34,55 The reduced bind-
ing of AP-FITC-s-MSN to RBC could be explained by the
electrostatic interaction between amino groups on the
surface of MSNs and surface silanols,56 which diminishes
the accessibility of silanol groups to the cell membrane.

The results obtained by flow cytometrywere further
confirmed by examination of the mixtures of the
derivatized MSNs with RBCs under confocal fluores-
cence microscopy. For this purpose, RBCs were first
labeled with PKH26 red fluorescent dye (Sigma) and
incubated with FITC-labeled particles at the same con-
ditions as in the flow cytometry experiment. FITC-l-MSNs,
FITC-s-MSNs, and CA1.5-FITC-s-MSNs (Figure 7a,b,e) were

easily observed associated to PKH26-labeled RBCs. Con-
versely, only a small proportion of AP1.5-FITC-s-MSNs
(Figure 7c) and PEG1-FITC-s-MSNs (Figure 7d) were found
colocalized with PKH26-RBCs, while most of the particles
were observed in the extracellular space. A series of
movies showing eachone of these combinations ofMSNs
and RBCs were prepared from micrographs taken at
different z-positions by changing the focal plane every
0.5 μm; these movies can be found in the Supporting
Information. The different affinities of each MSN for the
RBCs were also confirmed by the different shifts of the
green fluorescence intensities in the 2D dot plots from
flow cytometry (Figure 7, bottom).

Effect of RBC-MSN Interaction on RBC Deformability. The
attachment of nanoparticles to the surface of red blood
cells has been suggested for extending the circulation
time and sustained release of therapeutic agents.40,53

Such attachment, however, could have an impact on
the properties of the membrane affecting the normal
function of RBCs. Surprisingly, this potential problem
has not been addressed for any nanoparticle-based
drug carrier, to the best of our knowledge. One of the
key properties of RBCs (6-8 μm in diameter) is their

Figure 5. Cellular uptake process (left to right) examined by transmission electron microscopy of RBCs (5% hematocrit)
incubated with 20 μg mL-1 l-MSN. Images increase in magnification from top to bottom, with features highlighted in white
arrows. These images (left to right) correspond to different cells at different stages of nanoparticle encapsulation.

Figure 6. Flow cytometry measurement of RBCs (5 � 106 cells mL-1) incubated with 10 μg mL-1 of (a) APx-FITC-s-MSN,
(b) PEGx-FITC-s-MSN, and (c) CAx-FITC-s-MSN.
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ability to undergo deformation to traverse the capillaries
of the microvascular system (2-3 μm in diameter). This
remarkable deformability of RBCs is critical for effective
blood flow and depends strongly on the flexibility of the
cell membrane. This is the reason why it is important to
assess theeffects ofMSNattachmenton thedeformability
of RBCs.

To study the deformability of RBCs, we used a
literature reported method consisting of filtering the
cells through polycarbonate membranes with straight
channels of 3 μm pore diameter (Nucleopore).41 This
technique is generally accepted as a relative indication
of RBC deformability.41,57-59 We measured the filter-
ability of fresh human RBCs (5% hematocrit) previ-
ously incubated with varying concentrations (10, 20,
50 μg mL-1) of MSN under a constant negative pres-
sure (-20 cm H2O). The time it took each RBC suspen-
sion to flow through the membrane was recorded and
the deformability index (DI) was expressed as the
volume (mL) of red blood cells filtered per minute. As
shown in Figure 8a, the deformability of RBC decreased
with increasing concentrations of all MSN materials.

The RBC deformability was severely impaired by l-MSN
at concentrations as low as 10 μg mL-1. This result is
not surprising given the strong affinity and shape
altering effects already described for l-MSN. As ex-
pected, the incorporation of AP and PEG groups
to the surface of s-MSN preserved the elasticity of
RBCs better than the nonfunctionalized s-MSN and
the CA-s-MSN, especially at the higher concentrations
(>20 μg mL-1). These results correlate well with the
observed effects on the degree of RBC-MSN inter-
actions (Figure 8b). These observations suggest that
the attachment of MSNs to the surface of RBCs restricts
the flexibility of the membrane and leads to impair-
ment in the deformability of RBCs. Conversely, the
attachment of functional groups to the surface ofMSNs
reduces the affinity of the particles to themembrane of
RBC and allows the cells to preserve their deformability.

CONCLUSION

In this study, we investigated the interactions be-
tween MSNs of different particle sizes and surface
properties and RBC membranes by using fluorescence
and electronmicroscopies and cell biology techniques.
We compared the size- and surface-dependent hemo-
compatibility of two types of MSN materials (MCM-41
and SBA-15) and showed, for the first time, how MSNs
are engulfed by RBCs. This size- and surface-dependent
process is the resultant of two opposing forces, namely,
the attractive interaction between MSNs and RBCs and
the bending of the cell membrane. These results
suggest that only small MCM-41-type MSN materials
(100-200 nm) may be considered as potentially safe
candidates for intravascular drug delivery. It must be
noted that, although RBCs are the dominant cells in
blood, the interactions of these nanoparticles with
other blood cells and components60,61 should also be

Figure 7. Confocalfluorescencemicrographs (top) anddot plots from theflowcytometry analyses (bottom)of PKH26-labeled
RBCs (5 � 106 cells mL-1) incubated with 10 μg mL-1 of (a,f) FITC-l-MSN, (b,g) FITC-s-MSN, (c,h) AP1.5-FITC-s-MSN, (d,i)
PEG1-FITC-s-MSN, and (e,j) CA1.5-FITC-s-MSN. The axes correspond to the intensity of red fluorescence due to PKH26 labeling
(horizontal axis) and green fluorescence due to the attachment of FITC-MSNs onto PKH26-RBCs (vertical axis). The plot was
gated to show PKH26-labeled RBCs in area Q4 and FITC fluorescent PKH26-RBCs in area Q2. Individual channels for the
merged confocal images and enlarged dot plots with PKH26-RBC control are shown in Supporting Information Figure S7 and
Figure S8, respectively.

Figure 8. (a) Deformability index (DI) of RBCs incubated
with s-MSN (blue), AP1.5-s-MSN (green), PEG1-s-MSN (black),
CA1.5-s-MSN (purple), and l-MSN (red). (b) Flow cytometry
analyses of RBCs incubated with FITC-l-MSN (red), FITC-
s-MSN (blue), AP1.5-FITC-s-MSN (green), PEG1-FITC-s-MSN
(black), and CA1.5-FITC-s-MSN (purple).
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evaluated to ensure the safe use of these materials for
biomedical applications. In addition, we demonstrated
that the biocompatibility of these MSN materials with
RBCs strongly depends on their surface derivatization
tominimize their interactionwith redblood cells. Blocking
the surface silanols of the particles with organic groups
reduces their interactions with the membranes of RBCs.
Minimizing these interactions has a dramatic effect on
preserving the deformability of RBCs, which is necessary
to ensure effective blood circulation. These findings

suggest that it is possible to gain control over the inter-
actions ofMSNswith RBCmembranes in order to regulate
their circulationhalf-lives for various therapeuticpurposes,
while minimizing their toxicity by carefully choosing and
tuning their surface functionalities. As new MSN-based
drug delivery systems burgeon from many international
research groups, our results will provide a practical guide
to size and surface considerations when designing MSN-
based drug carriers for delivery, diagnostic, and therapeu-
tic applications.

METHODS
Synthesis of Mesoporous Silica Nanoparticles. s-MSNwas prepared

by our previously reported method.33 In brief, N-cetyltrimethyl-
ammonium bromide (CTAB, 1.00 g, 2.74 mmol) was dissolved in
480mL of nanopurewater, followed by the addition of 3.5mL of
sodium hydroxide aqueous solution (2.0 M), and the mixture
was heated to 80 �C. Tetraethoxysilane (TEOS, 5.0 mL, 22.4
mmol) was added dropwise to the surfactant solution under
vigorous stirring. The reaction mixture was stirred at 80 �C for
another 2 h. The resulting white solid was filtered, washed
thoroughly with water and methanol, and dried under high
vacuum at 80 �C overnight. The fluorescent-labeled MSN (FITC-
s-MSN) was synthesized by reacting fluorescein isothiocyanate
(FITC, 15 mg, 38.5 μmol) with (3-aminopropyl)trimethoxysilane
(APTMS, 10 μL, 57.3 μmol) for 2 h in dimethyl sulfoxide (DMSO)
and adding the resulting product following the addition of TEOS
in the above synthesis. The unlabeled FITC was removed by
Soxhlet extraction with methanol. The amount of FITC labeled
on FITC-s-MSN was quantified to be 20-30 μmol g-1 by TGA.
The functionalization of s-MSN and FITC-s-MSN with aminopro-
pyl (AP), polyethylene glycol (PEG), and carboxylate (CA) groups
was performed by refluxing a suspension of the as-made
material (200 mg of s-MSN or FITC-s-MSN) with APTMS, 2-
[methoxy(polyethylenoxy)propyl]trimethoxysilane (PEG-silane),
and 3-(triethoxysilyl)propylsuccinic anhydride of various amount
(x mmol) in anhydrous toluene (50 mL) for 20 h, followed by
filtration andwashingwith toluene andmethanol, and dried under
high vacuum overnight. The succinic anhydride groups were
hydrolyzed by boiling the materials in water for 6 h and measured
by FTIR. The CTAB surfactant was removed by refluxing the
materials in0.37%HClmethanol, followedby filtrationandwashing
with abundant methanol and dried under high vacuum. The
amount of functional groups (AP, PEG, and CA) grafted on MSNs
was quantified by TGA shown in the bottom of Figure S5 and
summarized in Table S1.

l-MSN was prepared by a modified literature procedure.5

Pluronic P104 (courtesy of BASF, 7.0 g) was dissolved in a mix-
ture of water (164 g) and HCl (109 g, 4M) and stirred at 55 �C for
1 h. Tetramethyl orthosilicate (10.64 g) was quickly added into
the solution at 55 �C. After continuous stirring for 24 h, the
reaction mixture was moved to a Teflon-lined, high-pressure
autoclave for further hydrothermal treatment at 150 �C for 24 h.
The product was isolated by filtration, washed with copious
water andmethanol, and dried at 80 �C in air. The Pluronic P104
surfactant was removed by calcination at 550 �C for 6 h. The
l-MSN was fluorescently labeled (FITC-l-MSN) by reacting FITC
(15 mg, 38.5 μmol) with APTMS (10 μL, 57.3 μmol) for 2 h in
dimethyl sulfoxide (DMSO) and adding the resulting product to
a suspension of l-MSN (1 g) in anhydrous toluene (100 mL) for
20 h, followed by filtration and washing with toluene and
methanol. The unlabeled FITC was removed by Soxhlet extrac-
tion with methanol as the solvent. The amount of FITC labeled
on FITC-l-MSN was quantified to be around 30 μmol g-1.

The products were characterized by X-ray diffraction in a
Rigaku Ultima IV diffractometer, nitrogen sorption analysis in a
Micromeritics Tristar 3000 surface area, and porosity ana-
lyzer using Brunauer-Emmett-Teller (BET) equation to cal-
culate apparent surface area and pore volume and the

Barret-Joyner-Halenda (BJH) method to calculate pore size dis-
tribution, thermogravimetric analysis (TGA) in a TGA 2950 thermo-
gravimetric analyzer with a temperature ramp of 5 �C/min in air,
dynamic light scattering size analyses of particle suspensions in a
Malvern NanoHT Zetasizer, scanning electronmicroscopy (SEM) of
samples coatedwith gold in a FEI Quanta 250 FEGmicroscope, and
transmission electron microscopy (TEM) of samples supported on
coppergrids in aTecnaiG2F20microscopeoperatedat200kV. FTIR
spectroscopy was performed using a Nicolet Nexus 470 (Madison,
EI), equipped with a cooled CT/A detector and an Ever-Glo source.

Isolation and Labeling of Red Blood Cells (RBCs). Ethylenediamine
tetraacetic acid (EDTA)-stabilized human blood samples were
freshly collected in the Occupational Medicine Office of Iowa
State University and Ames Laboratory. Whole blood was cen-
trifuged at 1600 rpm for 5 min, and the plasma, buffy coat, and
top layer of cells were decanted. The remaining packed RBCs
were washed five times with sterile isotonic PBS. For labeling
with PKH26 (red fluorescent cell linker kit, Sigma, USA), 100 μL of
packed RBCs was resuspended in 1 mL of diluent C and mixed
with 1 mL of diluent C containing 4 μM PKH26. Cells were
incubated for 5 min at room temperature in the dark. The
reaction was stopped by adding 1 mL of plasma (heat inacti-
vated for 1 h at 65 �C beforehand) for 1 min and centrifuged at
1600 rpm for 5 min. The stained RBCs were washed five times
with PBS to remove free pKH26 dye.

Hemolysis Assay. After cell washing, 200 μL of packed RBCwas
diluted to 4 mL with PBS (5% hematocrit). The diluted RBC
suspension (0.2 mL) was then mixed with s-MSN and l-MSN
suspensions in PBS (0.8 mL) at various concentrations. PBS and
water (0.8 mL) were used instead of MSN suspensions as
negative and positive control, respectively. The mixture was
gently vortexed and incubated at room temperature for 2 h,
followed by centrifuge (1600 rpm, 5min), and the absorbance of
the supernatant at 541 nm was measured by UV-visible
spectrometry. The percent hemolysis of RBCs was calculated
using the following formula: percent hemolysis = ((sample
absorbance - negative control absorbance)/(positive control
absorbance - negative control absorbance)) � 100.

Scanning Electron Microscopy (SEM). The diluted RBC suspension
(5% hematocrit, 0.2 mL) was mixed with s-MSN and l-MSN
suspensions in PBS (0.8 mL) at various concentrations and
incubated at room temperature for 2 h. The samples were then
fixed by adding a 1% glutaraldehyde solution dropwise over
5 min and further incubated at 37 �C for 1.5 h, followed by
postfixation with 1% osmium tetroxide in PBS for 1.5 h. Cells
were dehydrated in increasing concentrations of ethanol (50, 60
70, 80, 90, and 100%) for 15 min each. The cell suspensions
were dropped onto glass coverslips, dried, and coated with Au
before viewing under a FEI Quanta 250 FEG scanning electron
microscope.

Transmission Electron Microscopy (TEM). The samples were pre-
pared, fixed, and dehydrated as above and stained with 2%
uranyl acetate in 70% ethanol at room temperature overnight.
The cells were washed three times with acetone and embedded
in Epon. The embedded samples were sectioned in 60 nm thick
slices on a sliding ultramicrotome. Thin sections supported on
copper grids were examined in a Tecnai G2 F20 microscope
operated at 200 kV.
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Flow Cytometry. After cell washing, 200 μL of RBC suspension
at 5 � 106 cells mL-1 was mixed with 200 μL of FITC-MSN sus-
pensions in PBS at 20 μg mL-1 and incubated at room temper-
ature for 2 h before flow cytometry analysis in a BD FACSCanto
instrument.

Confocal Fluorescence Microscopy. PKH26-labeled RBC suspension
(200 μL) at 5� 106 cells mL-1 was mixed with 200 μL of FITC-MSN
suspensions in PBS at 20 μg mL-1 and incubated at room tem-
perature for2h.Analiquotof samplewasmountedbetweenplastic
coverslips and imaged in a Leica SP5 X confocal system.

Deformability Assay. Packed RBCs (1.5 mL) were washed and
diluted to 30 mL with PBS (5% hematocrit). The diluted RBC
suspension (1mL) was thenmixedwithMSN suspensions in PBS
(4 mL) at various final concentrations of 10, 20, and 50 μg mL-1

with PBS as control. The mixture was gently vortexed and
incubated at room temperature for 2 h before filtering through
polycarbonate membrane with straight channels of 3 μm pore
diameter (Nucleopore, Fisher, USA) under a constant negative
pressure (-20 cm H2O). The time for 0.5 mL RBC suspension to
pass through the membrane was recorded, and the deform-
ability index (DI) was calculated as the volume of red blood cells
filteredperminute. Datawerepresentedasmeanvaluesof triplicate
experiments. Thepresentmethodandapparatus for RBC filterability
measurement have been described in detail elsewhere.41

Acknowledgment. This manuscript has been dedicated in
memory of our dear mentor and friend, Victor S.-Y. Lin. This
research is supported by the U.S. National Science Foundation
NSF (CHE-0809521).

Supporting Information Available: The characterizations
of MSNs, additional SEM images of RBCs with MSNs, dose-
dependent RBC hemolysis and spiculation by l-MSN, enlarged
confocal fluorescence micrographs, dot plots from flow cyto-
metry, and movies of confocal micrographs recorded at differ-
ent z-positions. This material is available free of charge via the
Internet at http://pubs.acs.org.

REFERENCES AND NOTES
1. Slowing, I. I.; Vivero-Escoto, J. L.; Trewyn, B. G.; Lin, V. S. Y.

Mesoporous Silica Nanoparticles: Structural Design and
Applications. J. Mater. Chem. 2010, 20, 7924–7937.

2. Cai, Q.; Lin, W. Y.; Xiao, F. S.; Pang, W. Q.; Chen, X. H.; Zou,
B. S. The Preparation of Highly Ordered MCM-41 with
Extremely Low Surfactant Concentration. Microporous
Mesoporous Mater. 1999, 32, 1–15.

3. Huh, S.; Wiench, J. W.; Yoo, J.-C.; Pruski, M.; Lin, V. S. Y.
Organic Functionalization and Morphology Control of
Mesoporous Silicas via a Co-condensation Synthesis
Method. Chem. Mater. 2003, 15, 4247–4256.

4. Lu, F.; Wu, S.-H.; Hung, Y.; Mou, C.-Y. Size Effect on Cell
Uptake in Well-Suspended, Uniform Mesoporous Silica
Nanoparticles. Small 2009, 5, 1408–1413.

5. Linton, P.; Alfredsson, V. Growth and Morphology of
Mesoporous SBA-15 Particles. Chem. Mater. 2008, 20,
2878–2880.

6. Descalzo, A. B.; Martinez-Manez, R.; Sancenon, F.; Hoff-
mann, K.; Rurack, K. The Supramolecular Chemistry of
Organic-Inorganic Hybrid Materials. Angew. Chem., Int.
Ed. 2006, 45, 5924–5948.

7. Coti, K. K.; Belowich, M. E.; Liong, M.; Ambrogio, M. W.; Lau,
Y. A.; Khatib, H. A.; Zink, J. I.; Khashab, N. M.; Stoddart, J. F.
Mechanised Nanoparticles for Drug Delivery. Nanoscale
2009, 1, 16–39.

8. Zhao, Y.; Vivero-Escoto, J. L.; Slowing, I. I.; Trewyn, B. G.; Lin,
V. S. Y. CappedMesoporous Silica Nanoparticles as Stimuli-
Responsive Controlled Release Systems for Intracellular
Drug/Gene Delivery. Expert Opin. Drug Delivery 2010, 7,
1013–1029.

9. Shen, S.; Chow, P. S.; Chen, F.; Tan, R. B. H. Submicron Particles
of SBA-15 Modified with MgO as Carriers for Controlled Drug
Delivery. Chem. Pharm. Bull. 2007, 55, 985–991.

10. Vivero-Escoto, J. L.; Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y.
Mesoporous Silica Nanoparticles for Intracellular Con-
trolled Drug Delivery. Small 2010, 6, 1952–1967.

11. Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y. Mesoporous Silica
Nanoparticles for Intracellular Delivery of Membrane-
Impermeable Proteins. J. Am. Chem. Soc. 2007, 129, 8845–
8849.

12. Kim, S.-I.; Pham, T. T.; Lee, J.-W.; Roh, S.-H. Releasing
Properties of Proteins on SBA-15 Spherical Nanoparticles
Functionalized with Aminosilanes. J. Nanosci. Nanotechnol.
2010, 10, 3467–3472.

13. Nguyen, T. P. B.; Lee, J.-W.; Shim, W. G.; Moon, H. Synthesis
of Functionalized SBA-15 with Ordered Large Pore Size
and Its Adsorption Properties of Bovine Serum Albumin.
Microporous Mesoporous Mater. 2008, 110, 560–569.

14. Doadrio, J. C.; Sousa, E. M. B.; Izquierdo-Barba, I.; Doadrio,
A. L.; Perez-Pariente, J.; Vallet-Regi, M. Functionalization of
Mesoporous Materials with Long Alkyl Chains as a Strat-
egy for Controlling Drug Delivery Pattern. J. Mater. Chem.
2006, 16, 462–466.

15. Zhu, Y.; Kaskel, S.; Ikoma, T.; Hanagata, N. Magnetic SBA-
15/Poly(N-isopropylacrylamide) Composite: Preparation,
Characterization and Temperature-Responsive Drug
Release Property. Microporous Mesoporous Mater. 2009,
123, 107–112.

16. Mercuri, L. P.; Carvalho, L. V.; Lima, F. A.; Quayle, C.; Fantini,
M. C. A.; Tanaka, G. S.; Cabrera, W. H.; Furtado, M. F. D.;
Tambourgi, D. V.; Matos, J. d. R.; et al.Ordered Mesoporous
Silica SBA-15: A New Effective Adjuvant To Induce Anti-
body Response. Small 2006, 2, 254–256.

17. Zhao, Y.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S. Y. Mesoporous
Silica Nanoparticle-Based Double Drug Delivery System
for Glucose-Responsive Controlled Release of Insulin and
Cyclic AMP. J. Am. Chem. Soc. 2009, 131, 8398–8400.

18. Lee, J. E.; Lee, N.; Kim, H.; Kim, J.; Choi, S. H.; Kim, J. H.; Kim,
T.; Song, I. C.; Park, S. P.; Moon, W. K.; et al.Uniform
Mesoporous Dye-Doped Silica Nanoparticles Decorated
with Multiple Magnetite Nanocrystals for Simultaneous En-
hancedMagnetic Resonance Imaging, Fluorescence Imaging,
and Drug Delivery. J. Am. Chem. Soc. 2010, 132, 552–557.

19. Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel,
A. E.; Tamanoi, F.; Zink, J. I. Multifunctional Inorganic
Nanoparticles for Imaging, Targeting, and Drug Delivery.
ACS Nano 2008, 2, 889–896.

20. Tu, H.-L.; Lin, Y.-S.; Lin, H.-Y.; Hung, Y.; Lo, L.-W.; Chen, Y.-F.;
Mou, C.-Y. In Vitro Studies of Functionalized Mesoporous
Silica Nanoparticles for Photodynamic Therapy. Adv.
Mater. 2009, 21, 172–177.

21. Taylor, K. M. L.; Kim, J. S.; Rieter, W. J.; An, H.; Lin, W.; Lin, W.
Mesoporous Silica Nanospheres as Highly Efficient MRI
Contrast Agents. J. Am. Chem. Soc. 2008, 130, 2154–2155.

22. Lee, C.-H.; Cheng, S.-H.; Wang, Y.-J.; Chen, Y.-C.; Chen, N.-T.;
Souris, J.; Chen, C.-T.; Mou, C.-Y.; Yang, C.-S.; Lo, L.-W. Near-
Infrared Mesoporous Silica Nanoparticles for Optical
Imaging: Characterization and In Vivo Biodistribution.
Adv. Funct. Mater. 2009, 19, 215–222.

23. Lu, J.; Liong, M.; Li, Z.; Zink, J. I.; Tamanoi, F. Biocompat-
ibility, Biodistribution, and Drug-Delivery Efficiency of
Mesoporous Silica Nanoparticles for Cancer Therapy in
Animals. Small 2010, 6, 1794–1805.

24. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.;
Moon, W. K.; Hyeon, T. Multifunctional Uniform Nanopar-
ticles Composed of a Magnetite Nanocrystal Core and a
Mesoporous Silica Shell for Magnetic Resonance and
Fluorescence Imaging and for Drug Delivery. Angew.
Chem., Int. Ed. 2008, 47, 8438–8441.

25. Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J. I.; Nel, A. E.
Engineered Design of Mesoporous Silica Nanoparticles to
Deliver Doxorubicin and P-Glycoprotein siRNA To Over-
come Drug Resistance in a Cancer Cell Line. ACS Nano
2010, 4, 4539–4550.

26. Tao, Z.; Morrow, M. P.; Asefa, T.; Sharma, K. K.; Duncan, C.;
Anan, A.; Penefsky, H. S.; Goodisman, J.; Souid, A.-K.
Mesoporous Silica Nanoparticles Inhibit Cellular Respira-
tion. Nano Lett. 2008, 8, 1517–1526.

27. Hudson, S. P.; Padera, R. F.; Langer, R.; Kohane, D. S. The
Biocompatibility of Mesoporous Silicates. Biomaterials
2008, 29, 4045–4055.

A
RTIC

LE



ZHAO ET AL. VOL. 5 ’ NO. 2 ’ 1366–1375 ’ 2011 1375

www.acsnano.org

28. Heikkilae, T.; Santos, H. A.; Kumar, N.; Murzin, D. Y.;
Salonen, J.; Laaksonen, T.; Peltonen, L.; Hirvonen, J.; Lehto,
V.-P. Cytotoxicity Study of Ordered Mesoporous Silica
MCM-41 and SBA-15 Microparticles on Caco-2 Cells. Eur.
J. Pharm. Biopharm. 2010, 74, 483–494.

29. Al Shamsi, M.; Al Samri, M. T.; Al-Salam, S.; Conca, W.;
Shaban, S.; Benedict, S.; Tariq, S.; Biradar, A. V.; Penefsky,
H. S.; Asefa, T.; et al.Biocompatibility of Calcined Mesopor-
ous Silica Particles with Cellular Bioenergetics in Murine
Tissues. Chem. Res. Toxicol. 2010, 23, 1796–1805.

30. Slowing, I. I.; Wu, C.-W.; Vivero-Escoto, J. L.; Lin, V. S. Y.
Mesoporous Silica Nanoparticles for Reducing Hemolytic
Activity towards Mammalian Red Blood Cells. Small 2009,
5, 57–62.

31. Lin, Y.-S.; Haynes, C. L. Impacts of Mesoporous Silica
Nanoparticle Size, Pore Ordering, and Pore Integrity on
Hemolytic Activity. J. Am. Chem. Soc. 2010, 132, 4834–
4842.

32. Lin, Y.-S.; Haynes, C. L. Synthesis and Characterization of
Biocompatible and Size-Tunable Multifunctional Porous
Silica Nanoparticles. Chem. Mater. 2009, 21, 3979–3986.

33. Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.;
Jeftinija, S.; Lin, V. S. Y. A Mesoporous Silica Nanosphere-
Based Carrier System with Chemically Removable CdS
Nanoparticle Caps for Stimuli-Responsive Controlled Re-
lease of Neurotransmitters and Drug Molecules. J. Am.
Chem. Soc. 2003, 125, 4451–4459.

34. Slowing, I.; Trewyn, B. G.; Lin, V. S. Y. Effect of Surface
Functionalization of MCM-41-Type Mesoporous Silica
Nanoparticles on the Endocytosis by Human Cancer Cells.
J. Am. Chem. Soc. 2006, 128, 14792–14793.

35. Radu, D. R.; Lai, C.-Y.; Huang, J.; Shu, X.; Lin, V. S. Y. Fine-
Tuning the Degree of Organic Functionalization of Meso-
porous Silica Nanosphere Materials via an Interfacially
Designed Co-condensation Method. Chem. Commun.
2005, 1264–1266.

36. Radu, D. R.; Lai, C.-Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.;
Lin, V. S. Y. A Polyamidoamine Dendrimer-Capped Meso-
porous Silica Nanosphere-Based Gene Transfection Re-
agent. J. Am. Chem. Soc. 2004, 126, 13216–13217.

37. Hom, C.; Lu, J.; Liong, M.; Luo, H.; Li, Z.; Zink, J. I.; Tamanoi, F.
Mesoporous Silica Nanoparticles Facilitate Delivery of
siRNA To Shutdown Signaling Pathways in Mammalian
Cells. Small 2010, 6, 1185–1190.

38. Torney, F.; Trewyn, B. G.; Lin, V. S. Y.; Wang, K. Mesoporous
Silica Nanoparticles Deliver DNA and Chemicals into
Plants. Nat. Nanotechnol. 2007, 2, 295–300.

39. Wang, L.-S.; Wu, L.-C.; Lu, S.-Y.; Chang, L.-L.; Teng, I. T.; Yang,
C.-M.; Ho, J.-a. A. Biofunctionalized Phospholipid-Capped
Mesoporous Silica Nanoshuttles for Targeted Drug Deliv-
ery: Improved Water Suspensibility and Decreased Non-
specific Protein Binding. ACS Nano 2010, 4, 4371–4379.

40. Chambers, E.; Mitragotri, S. Prolonged Circulation of Large
Polymeric Nanoparticles by Non-covalent Adsorption on
Erythrocytes. J. Controlled Release 2004, 100, 111–119.

41. Reid, H. L.; Barnes, A. J.; Lock, P. J.; Dormandy, J. A.;
Dormandy, T. L. A Simple Method for Measuring Erythro-
cyte Deformability. J. Clin. Pathol. 1976, 29, 855–8.

42. Yawata, Y.Cell Membrane: the Red Blood Cell as aModel; Wiley-
VCH: Weinheim, Germany, 2003; pp 38-40.

43. Roiter, Y.; Ornatska, M.; Rammohan, A. R.; Balakrishnan, J.;
Heine, D. R.; Minko, S. Interaction of Nanoparticles with
Lipid Membrane. Nano Lett. 2008, 8, 941–944.

44. Lipowsky, R.; Dobereiner, H. G. Vesicles in Contact with
Nanoparticles and Colloids. Europhys. Lett. 1998, 43, 219–
225.

45. Deserno, M.; Gelbart, W. M. Adhesion and Wrapping in
Colloid-Vesicle Complexes. J. Phys. Chem. B 2002, 106,
5543–5552.

46. Fleck, C. C.; Netz, R. R. Electrostatic Colloid-Membrane
Binding. Europhys. Lett. 2004, 67, 314–320.

47. Reynwar, B. J.; Illya, G.; Harmandaris, V. A.; Mueller, M. M.;
Kremer, K.; Deserno, M. Aggregation and Vesiculation of
Membrane Proteins by Curvature-Mediated Interactions.
Nature 2007, 447, 461–464.

48. Zhu, H. Y.; Zhao, X. S.; Lu, G. Q.; Do, D. D. Improved
Comparison Plot Method for Pore Structure Characteriza-
tion of MCM-41. Langmuir 1996, 12, 6513–6517.

49. Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y. Stimuli-
Responsive Controlled-Release Delivery System Based on
Mesoporous Silica Nanorods Capped with Magnetic Nano-
particles. Angew. Chem., Int. Ed. 2005, 44, 5038–5044.

50. Vivero-Escoto, J. L.; Slowing, I. I.; Wu, C.-W.; Lin, V. S. Y.
Photoinduced Intracellular Controlled Release DrugDeliv-
ery in Human Cells by Gold-Capped Mesoporous Silica
Nanosphere. J. Am. Chem. Soc. 2009, 131, 3462–3463.

51. Zhu, C.-L.; Song, X.-Y.; Zhou, W.-H.; Yang, H.-H.; Wen, Y.-H.;
Wang, X.-R. An Efficient Cell-Targeting and Intracellular
Controlled-Release Drug Delivery System Based on MSN-
PEM-Aptamer Conjugates. J. Mater. Chem. 2009, 19, 7765–
7770.

52. He, Q.; Zhang, Z.; Gao, Y.; Shi, J.; Li, Y. Intracellular
Localization and Cytotoxicity of Spherical Mesoporous
SilicaNano- andMicroparticles. Small2009, 5, 2722–2729.

53. Hall, S. S.; Mitragotri, S.; Daugherty, P. S. Identification of
Peptide Ligands Facilitating Nanoparticle Attachment to
Erythrocytes. Biotechnol. Prog. 2007, 23, 749–754.

54. He, Q.; Zhang, J.; Shi, J.; Zhu, Z.; Zhang, L.; Bu, W.; Guo, L.;
Chen, Y. The Effect of PEGylation of Mesoporous Silica
Nanoparticles on Nonspecific Binding of Serum Proteins
and Cellular Responses. Biomaterials 2010, 31, 1085–
1092.

55. Gao, F.; Botella, P.; Corma, A.; Blesa, J.; Dong, L. Mono-
dispersed Mesoporous Silica Nanoparticles with Very
Large Pores for Enhanced Adsorption and Release of
DNA. J. Phys. Chem. B 2009, 113, 1796–1804.

56. Caravajal, G. S.; Leyden, D. E.; Quinting, G. R.; Maciel, G. E.
Structural Characterization of (3-Aminopropyl)triethoxy-
silane-Modified Silicas by Silicon-29 and Carbon-13 Nuc-
lear Magnetic Resonance. Anal. Chem. 1988, 60, 1776–86.

57. Luquita, A.; Urli, L.; Svetaz, M. J.; Gennaro, A. M.; Giorgetti,
M. E.; Pistone, G.; Volpintesta, R.; Palatnik, S.; Rasia, M.
In Vitro and Ex Vivo Effect of Hyaluronic Acid on Erythro-
cyte Flow Properties. J. Biomed. Sci. 2010, 17, 1–7.

58. Brown Clinton, D.; Ghali Halim, S.; Zhao, Z.; Thomas, L. L.;
Friedman, E. A. Association of Reduced Red Blood Cell
Deformability and Diabetic Nephropathy. Kidney Int.
2005, 67, 295–300.

59. Kikuchi, Y.; Koyama, T. Red Blood Cell Deformability
and Protein Adsorption on Red Blood Cell Surface. Am.
J. Physiol. 1984, 247, H739–H747.

60. De Paoli Lacerda, S. H.; Park, J.-J.; Meuse, C.; Pristinski, D.;
Becker, M. L.; Karim, A.; Douglas, J. F. Interaction of Gold
Nanoparticles with Common Human Blood Proteins. ACS
Nano 2010, 4, 365–379.

61. Semberova, J.; De Paoli Lacerda, S. H.; Simakova, O.;
Holada, K.; Gelderman, M. P.; Simak, J. Carbon Nanotubes
Activate Blood Platelets by Inducing Extracellular Ca2þ

Influx Sensitive to Calcium Entry Inhibitors. Nano Lett.
2009, 9, 3312–3317.

A
RTIC

LE


